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Invariant sets embedded in a chaotic attractor can generate time averages that differ from the average
generated by typical orbits on the attractor. Motivated by two different topics~namely, controlling chaos and
riddled basins of attraction!, we consider the question of which invariant set yields the largest~optimal! value
of an average of a given smooth function of the system state. We present numerical evidence and analysis that
indicate that the optimal average is typically achieved by a low-period unstable periodic orbit embedded in the
chaotic attractor. In particular, our results indicate that, if we consider that the function to be optimized
depends on a parameterg, then the Lebesgue measure ing corresponding to optimal periodic orbits of period
p or greater decreases exponentially with increasingp. Furthermore, the set of parameter values for which
optimal orbits are nonperiodic typically has zero Lebesgue measure.@S1063-651X~96!10307-X#

PACS number~s!: 05.45.1b

I. INTRODUCTION

Many questions concerning dynamical behavior are ad-
dressed by consideration of the long-time average of a func-
tion F of the state vectorx,

^F&5 lim
t→`

1

t E0
t

F„x~ t8!…dt8, ~1a!

^F&5 lim
t→`

1

t (t851

t

F~xt8!, ~1b!

where t denotes time and is either continuous@Eq. ~1a!# or
discrete@Eq. ~1b!#. @Assuming ergodicity, the time average
in Eq. ~1! can be replaced by a state space average over the
relevant invariant measure of the system.# We call F the
performance function.

In this paper we consider systems, such that, fortypical
choices of the initialx, the trajectory generated by the dy-
namical system is chaotic, and has a well-defined long-time
average~1!. ~Here ‘‘typical’’ is with respect to the Lebesgue
measure of initial conditions in state space.! We note, how-
ever, that atypical initial conditions may generate orbits em-
bedded in the chaotic attractor that have different values for
^F& than typical orbits. For example, consider a chaotic at-
tractor with a basin of attractionB. Even though there is a
set of initial conditions inB all yielding thesamevalue for
^F&, and the state space volume~Lebesgue measure! of these
initial conditions is equal to the entire volume ofB, there is
still a zero volume set of initial conditions~‘‘atypical’’ initial
conditions! whose orbits asymptote to sets within the chaotic
attractor but for which^F& is different from the average
attained by typical orbits. A familiar case where this happens
is when the initial condition is placed exactly on an unstable
periodic orbit embedded in a chaotic attractor~or on the
stable manifold of the unstable periodic orbit!.

The question we address is the following.Which (atypi-
cal) orbit on the attractor yields the largest value of^F&? To

our knowledge this question has not been previously ad-
dressed, yet it is fundamental to at least two important prob-
lem areas of current interest:

a. Controlling chaos.In one often used method@1# for the
control of chaos by use of small controls the strategy is to
first identify several low-period unstable periodic orbits em-
bedded in the chaotic attractor. One then determines the sys-
tem performance that would apply if each of the various
determined unstable periodic orbits were actually followed
by the system. In many cases the system performance can be
quantified as the value of some time average^F&, as in Eq.
~1!. One then selects an orbit yielding performance that is
best and feedback stabilizes that orbit. A question that might
be asked is whether one can obtain much better performance
by looking exhaustively at higher-period orbits or by consid-
ering stabilization of atypicalnonperiodicorbits embedded
in the chaotic attractor.

b. Bifurcation to riddled basins of attraction.Recently a
new type of basin of attraction has been found. This new
basin type is called ariddled basin@2,3#, and has the prop-
erty that any point in the basin has points in another attrac-
tor’s basin arbitrarily close to it~the basin, although of posi-
tive volume, has no interior!. Thus an arbitrarily small error
in the determination of an initial condition may cause the
orbit to go to a different attractor. This type of behavior can
be present in dynamical systems that possess an invariant
manifoldM and a chaotic attractor in that manifold. An in-
teresting basic question is that of how a nonriddled basin for
the chaotic attractor onM becomes riddled as a system pa-
rameter is varied~i.e., the bifurcation to a riddled basin! @4#.
This bifurcation occurs@5,6# when an invariant set within the
strange attractor first becomes unstable for perturbations
transverse to the invariant manifoldM . That is, the bifurca-
tion occurs when the transverse Lyapunov exponent maxi-
mized over all invariant sets in the chaotic attractor first be-
comes positive. In the simplest case, where the invariant
manifoldM has codimension one, the transverse Lyapunov
exponent is obtained from an average of a function@as in Eq.
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~1!# over the relevant orbit@5,6#, and again the study of this
bifurcation focuses on the invariant set maximizing an aver-
age@7#.

In this paper we only treat discrete time systems~1b!. The
case of continuous time systems is expected to yield similar
conclusions and is deferred to a future study. Our principal
result is that the largest value of^F& is typically achieved by
a low-period periodic orbit embedded in the chaotic attractor.

The outline of this paper is as follows. In Sec. II we
consider the ‘‘doubling transformation’’ 2x modulo1 with a
performance functionFg(x) with a single quadratic maxi-
mum for xP@0,1#. This example reveals interesting Farey
tree structure of the period of the optimal orbit as a function
of the parameterg. On the basis of this structure and other
numerical results we can make several conclusions for this
example.~1! The Lebesgue measure ing corresponding to
optimal periodic orbits of periodp or greater decreases ex-
ponentially withp for largep. ~2! The setSg of parameter
values for which optimal orbits are nonperiodic has Le-
besgue measure zero.~3! The setSg is uncountable, but has
fractal dimension zero.~4! Optimal nonperiodic orbits for
gPSg are similar to periodic orbits in that they have zero
topological entropy and zero fractal dimension.

In Sec. III we consider the tent map with a performance
function F(x) with a single quadratic maximum. We again
find conclusion~1!, listed above for the doubling transforma-
tion, holds. However, for the tent map we find that the pa-
rameter setSg , corresponding to optimal nonperiodic orbits,
is empty. Thus conclusions~2!–~4! above are trivially satis-
fied. Furthermore, the Farey structure observed for the dou-
bling transformation is absent, and a simpler structure pre-
vails. We then consider several other cases in Sec. IV: the
doubling transformation with a multihumped performance
function, the tent map with a multihumped performance
function, the Kaplan-Yorke map, and the He´non map. It ap-
pears that in all of the examples in Sec. IV the basic structure
is a combination of the two prototypical structures observed
in Secs. II and III. We believe that this composite type of
structure should be typical of what will occur in applications.
Based on our results in Sec. IV, we conjecture that conclu-
sions ~1! and ~2! above hold in general for typical low-
dimensional chaotic systems and typical smooth perfor-
mance functionsF depending on a parameter.@For the
examples of Sec. IV, we do not presently know whetherSg is
empty ~as in Sec. III! or not ~as in Sec. II!.# Finally, we
discuss the practical importance of our conclusions in the
contexts of chaos control@1#.

II. THE DOUBLING TRANSFORMATION WITH A
SINGLE-HUMPED PERFORMANCE FUNCTION

To begin we consider a simple example, namely, the dou-
bling transformation,

xt1152xt ~modulo1!, ~2!

and forF we take

Fg~x!5cos@2p~x2g!#. ~3!

Although some of the results we observe for Eqs.~2! and~3!
are model specific, we claim that Eqs.~2! and~3! also yield

essential behaviors that should be expected in general for
low-dimensional chaotic systems. A main point will be that
the optimal average is typically achieved by a low-period
periodic orbit@8#.

A. Periods of optimal orbits

For each of 105 evenly spaced values ofg, we tested the
value of ^Fg& for all periodic orbits of the map~2! with
periods 1 to 24. There are on the order of 106 such orbits.
Figure 1 shows the period of the orbit that maximizes^Fg&
for Eqs.~2! and ~3! as a function of the phase angleg. The
second column of Table I gives the fractionf (p) of phase
valuesg for which a period-p orbit maximizes^Fg&. For
example, ifg is chosen at random in@0,1#, then over 93% of
the time, the optimal periodic orbit does not exceed 7 in
period, and more than half the time the optimal orbit’s period
is 1, 2, or 3. The last column in Table I gives a conjectured
asymptotic prediction of the fractionf (p) of the time a
period-p orbit maximizeŝ Fg& if g is chosen at random in
@0,1#,

f ~p!'Kp22pf~p!. ~4!

Here f(p) is the Euler function, which is defined as the
number of integers between 1 andp ~inclusive! that are rela-
tively prime top @e.g., the numbers 1, 5, 7, and 11 are rela-
tively prime to 12, and sof(12)54#. Thusf(p)<p21 for
p>2, andf(p)5p21 if p is a prime. The factorK is a
fitting parameter, which we choose to be 1/6 in this example.
We see from Table I and the data plotted as diamonds in Fig.
2 that Eq.~4! agrees very well with the numerical results for
largep @the straight line in Fig. 2 has slope2 ln2 and, for the
plotted diamonds, the vertical axis is the logarithm of the
numerically computedf (p) divided bypf(p)#. From Table
I, the agreement with Eq.~4! is better than 5% forp.5.
Note that Eq.~4! apparently has nothing to do with the pre-
cise choice of the functionFg in Eq. ~3!. We believe that Eq.
~4! is a good approximation for typical smooth functions

FIG. 1. Period that optimizeŝFg& as a function ofg for the
doubling transformation~2! and performance function~3!. Unless
otherwise noted, all tables and graphs are based on computations
using 105 evenly spaced values ofg and orbits of periods 1–24.
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with a single maximum whose parameter dependence con-
sists of a phase shift. Tests using other quadratic maximum,
single-humped functions in place of Eq.~3! confirm this;
results forFg(x)52(x2g)2 are shown in the sixth column
of Table I.@Although Eq.~4! appears to give a good approxi-
mation for largep, we do not know whether the relative
error goes to zero asp→`.#

Not only are low-period orbits most often optimal, but,
even when a somewhat higher-period orbit is optimal, it ap-
parently only leads to a relatively small increase in^Fg& as
compared to a lower-period orbit. This point is emphasized
by the third column in Table I, which gives the fraction of
the g values such that the lowest-period orbit that yields a
value of^Fg& within 90% of the maximum value has period

p. Thus, for this example, if one is willing to settle for 90%
of optimal, oneneverhas to go above period 5. Also for over
83% of theg values it suffices to consider only period 1,
2, and 3. The relatively small increase of^Fg& achieved by
going to higher period is also evident in Fig. 3, which plots
the optimal value of̂ Fg& as a function of the phaseg.
Switching of optimal periods occurs at apparent changes in
the slope of this plot. For example, the inset in Fig. 3 shows
^Fg&p , the average ofFg over the optimal periodp orbit,
versus g for p53,5,8 in the region nearg'0.37. The
dashed line is a weighted average of^Fg& for periods 5 and
3, (5^Fg&513^Fg&3)/(513). The optimal period 8 value of
^Fg& closely follows this average, but is slightly above it.

B. Farey tree structure

It is also interesting to note the Farey tree structure
present in Fig. 1; the periods follow the pattern of the de-

FIG. 2. Graph of ln@f(p)/pN(p)# vs p, whereN(p) is the number
of g intervals for which a period-p orbit is optimal. The straight
line has slope2 ln2. The diamonds correspond to Eqs.~2! and~3!;
the squares correspond to Eqs.~2! and ~6!, the triangles to the
Kaplan-Yorke map example, and the crosses to the He´non map
example.

FIG. 3. Maximum value of̂ Fg& as a function ofg for the
doubling transformation~2! and function~3!. Inset: closeup with
added detail.

TABLE I. Numerical results for the doubling transformation~2!.

Eq. ~3! Eq. ~6! 2(x2g)2 Eq. ~4!

p f(p) f 90%(p) f (p) f 90%(p) f (p) f (p)

1 0.299 0.333 0.230 0.258 0.333 0.0833
2 0.160 0.212 0.163 0.175 0.148 0.0833
3 0.176 0.294 0.186 0.234 0.163 0.125
4 0.0985 0.143 0.0850 0.110 0.0948 0.0833
5 0.116 0.0180 0.136 0.169 0.111 0.104
6 0.0310 0 0.0350 0.0473 0.0322 0.0313
7 0.0573 0 0.0427 0.00664 0.0555 0.0547
8 0.0211 0 0.0583 0.00031 0.0210 0.0208
9 0.0178 0 0.0244 0 0.0176 0.0176
10 0.00644 0 0.00697 0 0.00652 0.00651
11 0.00918 0 0.0164 0 0.00900 0.00895
12 0.00196 0 0.00516 0 0.00196 0.00195
13 0.00324 0 0.00446 0 0.00316 0.00317
14 0.00084 0 0.00389 0 0.00086 0.00085
15 0.00062 0 0.00105 0 0.00058 0.00061
16–24 0.00092 0 0.00167 0 0.00092 0.00091
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nominators in the Farey construction of the rational numbers.
That is, between any twog intervals with optimal orbits of
periodspa and pb and only higher periods associated with
any interveningg intervals, there is a smallerg interval of
period pa1pb in between, and all otherg intervals in be-
tween have period higher thanpa1pb . This is illustrated by
Fig. 1 and the magnification of theg interval @0.35,0.45#
shown in Fig. 4. The inset in Fig. 4 shows the corresponding
tree. Between the period-3 interval and the period-2 interval
there is a period-5 interval. Between the 3 and the 5 there is
an 8, between the 5 and the 2 there is a 7, and so on. Nu-
merically we find an exponential decrease, asp increases, of
the total lengthr (p)5 f (p)1 f (p11)1•••1 f (pmax) of the
g intervals with period at leastp ~see the diamonds in Fig.
5!. Noting this and thinking of optimal nonperiodic orbits as
being created in the limit as the Farey tree level approaches
infinity, we infer that optimal nonperiodic orbits typically do
not occur on a positive Lebesgue measure set ofg.

The form of Eq.~4! is obtained as follows. The factor
f(p) is the number of times the integerp appears in the
complete Farey tree~starting at the lowest level with
pa5pb51). The factorp22p is obtained from our numerical
observations~and by direct analytical calculation in a special
case, see Appendix A! of how the width of an interval scales
with the periodp.

C. Fractal dimension of the setSg

Next, we consider the dimension of the setSg of g values
for which optimal orbits are nonperiodic. From the above
discussion,Sg has zero Lebesgue measure. Furthermore,Sg
can be generated by successive removal with increasingp of
f(p) intervals of optimal periodp orbits from theg interval
@0,1#, and because of the Farey structure these intervals are
separated by a positive distance from previously removed
intervals. ThusSg is a Cantor set~in particular,Sg is un-
countable!. We can determine the fractal dimension ofSg as
follows. The removal off(1)1f(2)1•••1f(p) intervals

at stages 1 throughp leaves of the order ofp2 unremoved
intervals @recall thatf(p)<p21#, which according to our
numerical evidence have widths of orderp22p or less. Thus
an e covering of the unremoved intervals at stagep of the
generation ofSg requiresN(e);p2 covering intervals if
e;p22p. Noting that @ lnN(e)#/@ln(1/e)#;p21ln(p) ap-
proaches zero asp→`, we conclude that the fractal dimen-
sion ofSg is zero.

D. Symbolic dynamics

The symbolic dynamics of the doubling transformation is
particularly simple. Each orbit is represented by a sequence
of two symbols, which we take to be zeros and ones, where
the first symbol is 0 if the orbit is in@0,1/2) and is 1 if the
orbit is in @1/2,1). The symbolic dynamics is then given by

FIG. 4. Closeup of Fig. 1. Inset: the associ-
ated portion of the Farey tree.

FIG. 5. Graph of ln@r(p)/p2# vs p. The straight line has slope
2 ln2. The various symbols plotted correspond to the same cases as
in Fig. 2.
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the shift on the symbol sequences and corresponds precisely
with the operation 2x modulo1 if x is represented in as a
binary ‘‘decimal.’’ Thus each periodp periodic orbit can be
represented as a string ofp zeros and ones~or any cyclic
permutation thereof! giving the order in which the intervals
@0,1/2) and@1/2,1) are visited. We find that the optimal pe-
riodic orbits for Eqs.~2! and~3! exhibit a very regular sym-
bolic representation.@This structure was also found for
other single-humped performance functions for which the
location of the maximum was monotonic ing, e.g.,
Fg(x)52(x2g)2.# The general scheme that we numeri-
cally observe is best expressed using the Farey tree represen-
tation shown in Fig. 6~a!. Starting on the lowest tree level
with the symbol 0 on the left and the symbol 1 on the right,
higher levels in Fig. 6~a! are generated as follows. If there is
a periodpc orbit on the tree, and its parent orbits on the tree
have periodspa andpb , wherepc5pa1pb , then the sym-
bol string representing the periodpc orbit is obtained by
listing thepa symbol string followed by thepb symbol string
@see Fig. 6~a!#. @Here the subscripta corresponds to the left
parent orbit on the tree in Fig. 6~a!, andb corresponds to the
right parent orbit.#

We now consider a specific example, namely, the
p53,5,8 orbits occurring in the inset to Fig. 3~see also Fig.
4!. The picture obtained for this example holds for all other
orbits in the Farey tree. The portion of the tree of Fig. 6~a!
corresponding to these three orbits is shown in Fig. 6~b!. The
period-3 orbit is obtained by noting that the repeated binary
expansion 0.001001001 . . . isequal to 1/7 which, using Eq.
~2!, gives the orbit

p53:
1

7
→

2

7
→

4

7
→

1

7
→•••.

Similarly, 0.001010010100101 . . .55/31, and for period 5
we obtain the orbit

p55:
5

31
→

10

31
→

20

31
→

9

31
→

18

31
→

5

31
→•••,

while for period 8 we have

p58:
37

255
→

74

255
→

148

255
→

41

255
→

82

255
→

164

255
→

73

255

→
146

255
→

37

255
→•••.

We find that the period-8 orbit comes closest to the period-
3 orbit at 73/255 and 2/7, respectively
(73/25522/7'2211). For the next two iterates, the period-
8 orbit closely tracks the period-3 orbit~with the distance
between the two doubling on each iterate!. At the third iter-
ate of 73/255, the period-8 orbit makes its closest approach
to an element of the period-5 orbit; the points involved are
74/255 and 9/31, respectively (9/31274/255'2213). The
period-8 orbit then tracks the period-5 orbit for four more
iterates, after which it again makes its closest approach to the
period-3 orbit, and so on. Thus the period-8 orbit is approxi-
mated by alternately following one of its Farey parents and
then the other. This explains why^Fg&8 in the inset of Fig. 3
so closely follows the weighted average of^Fg&3 and
^Fg&5 ~the dashed line in the inset of Fig. 3!. ~A little more
analysis of the placement of the various points of the peri-
odic orbits explains why^Fg&8 lies slightly above the
weighted average.!

E. Metric entropy for optimal nonperiodic orbits

Next, consider a nonperiodic orbit that maximizes^Fg&
for someg5g0PSg . We claim that such an orbit has very
special symbolic dynamics generated by the periodic orbits
that maximizê Fg& for nearby values ofg, and in fact has
metric entropy zero. Recalling the Farey structure of the
complement ofSg , we regardg0 as being the limit of inter-
vals in the complement ofSg corresponding to optimal orbits
of periods p1 ,p2 , . . . , where for n>3 we have
pn5pa1pb for somea,b,n. Examination of the periodic
orbits that~numerically! optimize^Fg& in these intervals re-
veals that the points in the orbit of periodpn always closely
approximate the points in the orbits of periodspa and pb ,
with the approximation becoming increasingly good asn in-
creases. We infer that the optimal nonperiodic orbit corre-
sponding tog5g0 is approximated arbitrarily closely by the
optimal orbits of periodpn as n→` @9#. Furthermore, as
follows from the discussion in the previous subsection, the
symbolic dynamics of the optimal periodpn orbit is always a
concatenation of the symbolic dynamics of the periodpa
and pb orbits that generatepn in the Farey tree. It follows
that the symbolic dynamics of the orbits of periods
pn11 ,pn12 , . . . are also concatenations of multiple copies
of the blocks of lengthspa andpb corresponding to the pe-
riod pa andpb orbits. Again we infer that the symbolic dy-
namics of the optimal nonperiodic orbit forg5g0 is also
composed entirely of two types of blocks of lengthspa and
pb , concatenated in a nonperiodic fashion. It then follows
that the metric entropy associated with this orbit is small; as
shown in Appendix B, in a segment ofN iterates along the
orbit, the logarithm of the number of possible symbol se-
quences is at most of the order of (Nlnpa)/pa , where we
assumepa>pb . Thus the entropy is at most of order
(lnpa)/pa . Since we can start this analysis arbitrarily far

FIG. 6. ~a! Farey tree specification of the symbolic dynamics of
optimal periodic orbits for Eqs.~ 2! and~ 3!. ~b! The part of the tree
in ~a! corresponding to thep53,5,8 periodic orbits occurring in the
inset of Fig. 3.
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along the Farey tree,pa can be arbitrarily large, and we
conclude that all optimal nonperiodic orbits have metric en-
tropy zero.

This conclusion has an immediate consequence for the
fractal dimension of the invariant measure generated by an
optimal nonperiodic orbit. In particular, the information di-
mension of an invariant measure of the map~2! has been
shown@10# to be the metric entropy divided by ln2; the latter
quantity is the Lyapunov exponent of the map~2!. Thus op-
timal nonperiodic orbits also have information dimension
zero. Hence these orbits, although nonperiodic, are similar to
periodic orbits in that they have zero entropy and zero di-
mension.

III. THE TENT MAP WITH A SINGLE-HUMPED
PERFORMANCE FUNCTION

We consider next the tent map on@0,1#,

xt115H 2xt xt<1/2

2~12xt! xt>1/2,
~5!

with the same performance function~3!. Results, based again
on 105 evenly spaced values ofg and orbits of period up to
24, are shown in the second and third columns of Table II
and in Fig. 7. We see that, again, most of the time optimiza-
tion is obtained at low period.~For instance, for more than
87% of theg values the optimum period is 4 or less; if one
is willing to settle for 90% of optimal, one never need go
above period 5.) The excellent agreement of the largep data
with f (p)5Kp22p shown in the last column of Table II
again implies an overall exponential decrease of the Le-
besgue measure corresponding tog values yielding optimi-
zation at periodp or greater. The valueK50.234 used in
this case is derived analytically in Appendix A.

Referring to Fig. 7, we see a structure very different from
the Farey structure observed in Fig. 1. In particular, asg
decreases fromg51, there is a succession of step increases,

starting with periodp51, as the optimal period changes
from p to p11. Exactly at theg valuegp corresponding to
the step increase from periodp to periodp11, the averages
^Fg&p and^Fg&p11 are equal, and are larger than^Fg&p8 for
all p8Þp,p11. For g neargp andg,gp (g.gp) we nu-
merically observe that̂Fg&p.^Fg&p11 (^Fg&p.^Fg&p11).
The situation is qualitatively similar to that in the inset to
Fig. 3, except that the dotted line, which would correspond in
this case tô Fg&2p11 , lies below the weighted average of
^Fg&p and ^Fg&p11 . Thus there is nog interval of period
2p11 derived by Farey summation between the period-p
and period-(p11) intervals. On the other hand, we can think
of each period-(p11) interval as being created by Farey
summation from the adjacent period-p interval and the large
period-1 interval. The structure in this example can thus be
likened to a single branch~the leftmost! of the Farey tree
discussed in Sec. II. Asg decreases further, there are an
infinite number of the step increases described above, accu-

FIG. 7. Period that optimizeŝFg& as a function ofg for the tent
map ~5! and performance function~3!.

TABLE II. Numerical results for the tent map~5!.

Eq. ~3! Eq. ~6! 0.234p22p

p f(p) f 90%(p) f (p) f 90%(p) f (p)

1 0.705 0.727 0.426 0.450 0.117
2 0.0314 0.0319 0.185 0.189 0.117
3 0.0611 0.0712 0.190 0.229 0.0878
4 0.0791 0.115 0.115 0.0791 0.0585
5 0.0580 0.0542 0.0147 0.0193 0.0366
6 0.0312 0 0.0175 0.0140 0.0219
7 0.0159 0 0.00666 0.00601 0.0128
8 0.00832 0 0.00568 0.0137 0.00731
9 0.00442 0 0.0171 0 0.00411
10 0.00238 0 0.0100 0 0.00229
11 0.00129 0 0.00540 0 0.00126
12 0.00069 0 0.00311 0 0.00068
13 0.00038 0 0.00156 0 0.00037
14 0.00020 0 0.00083 0 0.00020
15 0.00010 0 0.00048 0 0.00011
16–24 0.00012 0 0.00084 0 0.00012
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mulating to theg value g`'0.14955. For 0,g,g` the
optimal orbit is the period-1 orbit~fixed point! at x50.

Again thinking of a nonperiodic orbit as the limit of a
sequence of periodic orbits as the period goes to infinity, we
infer that the only possibleg value at which optimization
might be achieved only by a nonperiodic orbit isg5g` . On
the other hand, by continuity the interval on which the fixed
point x50 is optimal must be closed, and thus this interval
includesg` . We conclude that the setSg of g values for
which optimal orbits are nonperiodic is empty in this ex-
ample.

We remark that many of the conclusions we obtained in
this and the previous section ought to be amenable to rigor-
ous analysis of the maps~2! and ~5! and the performance
function ~3!. We hope to be able to report such results in a
future publication.

Our examples in this section@Eqs.~5! and~3!# and in the
previous section@Eqs.~2! and~3!# illustrate two prototypical
behaviors, step changes in the optimal period~Fig. 7!, and
Farey structure~Fig. 1!. In the next section we consider sev-
eral other examples. In all of these examples we find a ‘‘mix-
ture’’ of the two types of structure found in this section and
in Sec. II. Based on our examples we offer two conjectures
concerning typical low-dimensional chaotic systems and
typical smooth performance functions with a parameter de-
pendence:

Conjecture 1. The Lebesgue measure of the parameters
corresponding to optimal periodic orbits with periodp or
greater decreases exponentially withp.

Conjecture 2. The set of parameter values for which op-
timal orbits are nonperiodic has Lebesgue measure zero.

IV. OTHER EXAMPLES

In the remainder of this paper we present some further
numerical results involving different choices of the optimi-
zation functionF and different dynamical systems, in sup-
port of the above conjectures and the principle that, for most
parameters,̂ F& is maximized by a low-period orbit. The
composite Farey-step structure we observe in all these ex-
amples is discussed in Sec. IV D.

A. The doubling transformation and the tent map
with a multihumped performance function

The fourth column of Table I shows the fraction of 105

evenly spaced values ofg for which a period-p orbit of the
map ~2! maximizes the average of a different function:

Fg~x!5cos@2p~x2g!#1sin@6p~x2g!#. ~6!

The fifth column of Table I gives the corresponding fraction
for the lowestp within 90% of optimal. The function in Eq.
~6! has three local maxima and three local minima. This
increases the likelihood of a higher-period orbit maximizing
^Fg&, as is reflected in the data. The Farey structure, present
for smooth functions with a single maximum@e.g., Eq.~3!#,
is found only partially in this case~and in the examples with
two-dimensional maps that follow!. Thus the number of in-
tervalsN(p) for which a period-p orbit maximizeŝ Fg& is in
general not equal to the Euler functionf(p). However, we
find that the size of each period-p interval still tends to scale

asp22p; if we replace the Euler functionsf(p) in Eq. ~4! by
the numerically observed number ofg intervalsN(p) for
which a period-p orbit maximizes^Fg&, good agreement
with Eq. ~4! is restored. This is illustrated by the data repre-
sented as squares in Fig. 2. Another important point is that
for Eq. ~6! @as for Eq.~3!# we observe an exponential de-
crease, as a function ofp, of the proportionr (p) of phase
valuesg for which ^Fg& is maximized on an orbit of period
at leastp. This is shown by the data plotted as squares in
Fig. 5. Thus the result that low-period orbits most often are
optimal is apparently independent of our choice ofF.

Similar results and conclusions apply for the tent map~5!
with the multihumped performance function~6!. Data corre-
sponding to this case are given in the fourth and fifth col-
umns of Table II.

B. The Kaplan-Yorke map

The above discussion was for a one-dimensional map.
How do these results carry over into higher dimensionality?
To get some indication of the situation we consider two dif-
ferent two-dimensional maps. First we discuss the Kaplan-
Yorke map@11#,

xn1152xn ~modulo1!, ~7a!

yn115lyn1
1

p
sin~2pxn!. ~7b!

The Lyapunov exponents are ln2 and lnl. Choosingl50.4
we have an information dimension ofD'1.76 for the attrac-
tor. A picture illustrating the fractal structure of the attractor
appears in Fig. 8. Results for the optimal period withF cho-
sen to be

Fg~x,y!5cos@2p~x1y2g!# ~8!

are shown in the second and third columns of Table III, and
in Fig. 9. The scaling of the average size of theg interval on
which a given period-p orbit maximizes^Fg& is shown by
the triangles in Fig. 2, and the decay of the proportion
r (p) of g values for whicĥ Fg& is maximized by an orbit of

FIG. 8. Attractor for Kaplan-Yorke map withl50.4.
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period at leastp is depicted by the triangles in Fig. 5. These
results offer further support for our conjectures.

C. The Hénon map

Next we consider the He´non map

xn115a1byn2xn
2 , ~9a!

yn115xn , ~9b!

with the often studied parameter valuesa51.4, b50.3. The
periodic orbits of this map were found using the method of
@12#, and the function we averaged was

Fg~x,y!5cos@~p/2!~x1y2g!#. ~10!

There are many fewer orbits of a given period for this map
than in the previous cases, thus orbits of period up to 30 were

considered~there are approximately 105 such orbits!. The
results are given in the fourth and fifth columns of Table III,
and by the crosses in Figs. 2 and 5. Evidently the principle
that the optimum is typically achieved by low-period orbits,
and that near optimum performance can always be achieved
by such orbits, continues to hold.

D. Farey tree structure

Finally, we note that in all the cases we studied in this
section, the Farey tree structure we found in the prototype
case of Sec. II is still partially present. For example, in Fig.
10 we see the maximizing period as a function ofg for the
Hénon map example above. There are ‘‘step’’ transitions~as
in Sec. III! from period 1 to 2, 2 to 4, and so on; however, in
the insets we see that the high-periodg intervals near
g50.3 are created by Farey summation: between the period-
1 interval and the period-6 interval there is a period-7 inter-
val, between periods 7 and 6 there is period 13, between 7
and 13 there is period 20, and on either side there are periods
27 and 33; also between period 6 and 12 there is period
18. Similarly in the other cases we see that there can be step
transitions between low-periodg intervals, but that when
high-period intervals are created they follow the Farey pat-
tern. Since the setSg with optimal nonperiodic orbits results
from the limit as the period goes to infinity, the occurrence
of the higher-period orbits in a Farey sequence suggests that
our arguments in the case of Eqs.~2! and ~3! that Sg ~if
nonempty! is a Cantor set with fractal dimension zero and
that optimal nonperiodic orbits have metric entropy zero
carry over to the other cases.

V. FURTHER DISCUSSION

In the past, experimentalists working on controlling chaos
have often experimentally determined only low-period un-
stable periodic orbits embedded in the chaotic attractor. This
is partly because the determination of many high-period un-
stable periodic orbits can be very demanding and in many

FIG. 9. Period that optimizeŝFg& as a function ofg for the
Kaplan-Yorke map~7! and performance function~8!.

FIG. 10. Period that optimizeŝFg& as a function ofg for the
Hénon map~9! and performance function~10!. Periods 1–30 were
considered. Top inset: closeup of region with large periods. Bottom
inset: further closeup showing even larger periods detected using
g values spaced 1027 apart and orbits up to period 33.

TABLE III. Numerical results for 2D maps.

Kaplan-Yorke Map~7, 8! Hénon Map~9, 10!
p f(p) f 90%(p) f (p) f 90%(p)

1 0.282 0.319 0.427 0.434
2 0 0 0.421 0.424
3 0 0 0 0
4 0.140 0.188 0.0862 0.0857
5 0.223 0.326 0 0
6 0.127 0.139 0.00823 0.0352
7 0.0768 0.0285 0.0415 0.0210
8 0.0466 0 0 0
9 0.0524 0 0 0
10 0.0162 0 0 0
11 0.0169 0 0 0
12 0.00518 0 0.00915 0
13 0.00750 0 0.00531 0
14 0.00274 0 0 0
15 0.00158 0 0 0
16–24 0.00214 0 0.00205 0
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cases not feasible. Our work in this paper indicates that there
will usually be little gain, and often none, by going to the
considerable effort of determining many more embedded pe-
riodic orbits.
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APPENDIX A

In arriving at Eq.~4! we use the numerical observation
that the width ing of an interval with an optimal period-p
orbit scales asp22p for largep. In this Appendix we derive
this result analytically for Eqs.~5! and~3!, and indicate how
our analysis extends to the case of Eqs.~2! and ~3! as well.

Let I p be the period-p interval depicted in Fig. 7. Numeri-
cally we observe that eachI p for p>2 corresponds to the
period-p orbit of the tent map

2

2p11
→

4

2p11
→

8

2p11
→•••→

2p

2p11
→

2

2p11
→•••.

As in Sec. III, letgp be the endpoint in common between
I p andI p11 . Then the width ofI p is equal togp212gp . As
we discussed in Sec. III, wheng5gp the averageŝFg&p and
^Fg&p11 are equal. That is,

1

p (
k51

p

FgS 2k

2p11D5
1

p11(k50

p

FgS 2k11

2p1111D . ~A1!

To estimate the difference betweengp and the accumulation
point g` of the intervalsI p as p→`, we make a series of
approximations to the difference between the two sides of
Eq. ~11!, retaining terms of order 22p but throwing away
terms of order 222p. Multiplying both sides of Eq.~11! by
p(p11) and subtracting yields

05p(
k50

p

FgS 2k11

2p1111D2~p11!(
k51

p

FgS 2k

2p11D
5 (

k51

p FFgS 2

2p1111D1pFgS 2k11

2p1111D2~p11!FgS 2k

2p11D G
'(

k51

p

$Fg~0!122pFg8~0!1p@Fg~2k2p!22k22p21Fg8~2k2p!#2~p11!@Fg~2k2p!22k22pFg8~2k2p!#%

5 (
k51

p

@Fg~0!2Fg~2k2p!122pFg8~0!1~p12!2k22p21Fg8~2k2p!#.

Substitutingn5p2k we proceed to get

0' (
n50

p21

@Fg~0!2Fg~22n!122pFg8~0!1~p12!22p2n21Fg8~22n!#

' (
n50

`

@Fg~0!2Fg~22n!#1 (
n5p

`

22nFg8~0!1p22pFg8~0!1~p12!22p21(
n50

`

22nFg8~22n!

5 (
n50

`

@Fg~0!2Fg~22n!#1~p12!22p21(
n50

`

22n@Fg8~0!1Fg8~22n!#.

In the limit asp→` the above approximation becomes exact, and thus wheng5g` ,

(
n50

`

@Fg~0!2Fg~22n!#50.

It follows that

gp2g`'2~p12!22p21
(n50

` 22n@Fg8~0!1Fg8~22n!#

(n50
` @~]/]g!Fg~0!2~]/]g!Fg~22n!#

U
g5g`

,
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and consequently that

gp212gp'Kp22p,

where

K5
(n50

` 22n@Fg8~0!1Fg8~22n!#

2(n50
` @~]/]g!Fg~0!2~]/]g!Fg~22n!#

U
g5g`

.

In the case of Eqs.~5! and ~3!, we obtainK'0.234.
An analogous argument can be made in the case of Eqs.

~2! and~3!. In Fig. 1 we observe a similar sequence of inter-
vals I p accumulating to the left towardg'0.14955. Though
there are higher-period intervals intervening between con-
secutiveI p , we find the widths of these higher-period inter-
vals to be negligible compared with the widths of the sur-
roundingI p . Repeating the above analysis yields in this case

K5
(n51

` 22n@Fg8~0!2Fg8~22n!#

2(n51
` @~]/]g!Fg~0!2~]/]g!Fg~22n!#

U
g5g`

'0.150.

Similar but more complicated formulas can be derived for
the values ofK corresponding to other steplike cascades of
g intervals in Fig. 1; remarkably, our numerical results indi-
cate that all such values ofK are near to 1/6.

APPENDIX B

We consider two periodic orbits of lengthpa and pb ,
where we take the conventionpa>pb , and assume the two
orbits are encoded symbolically by strings of zeros and ones.
We wish to obtain an upper bound on the metric entropy of
an orbit that spends all its time tracking one or the other of
these orbits, so that its symbolic dynamics can be formed by
concatenating successive copies of the symbol strings for the

two periodic orbits. This is the situation for optimal orbits of
Eqs.~2! and~3! in the Farey tree; see Fig. 6. For largeN, we
ask how many distinct strings of lengthN one can form from
blocks consisting of thepa andpb strings. For simplicity we
assumeN is an integer multiple ofpa . We divide a string of
length N into substrings of lengthpa and ask how many
ways each substring can be divided into the building blocks
of typepa andpb . We allow for partial blocks at each end of
the substring, and do not worry about these partial blocks
matching up from one substring to the next—thus our even-
tual count of the number of distinct strings of lengthN will
be an overestimate.

The number of possible partitions of a substring of length
pa is bounded above by the number of possibilities for the
starting block~or partial block! times the number of possi-
bilities for the ending block~or partial block!. This is be-
cause the space~if any! between these blocks must be filled
with blocks of typepb . The starting block can be a block of
type pa or a partial block thereof with length
1,2, . . . ,pa21, giving pa possibilities. Likewise there are
pb possible starting blocks or partial blocks of typepb , for a
total of pa1pb possibilities. Similarly there arepa1pb pos-
sible ending blocks, for a total of, at most, (pa1pb)

2 pos-
sible partitions of a given substring of lengthpa .

This analysis gives an upper bound of (pa1pb)
2N/pa pos-

sible strings of lengthN when the building blocks have
lengthspa>pb . The entropy in this situation is thus bounded
above by

1

N
ln@~pa1pb!

2N/pa#5
2

pa
ln~pa1pb!.

Thus, aspa is allowed to approach infinity, this expression
goes to zero, and we conclude that the entropy of a nonpe-
riodic orbit is zero.
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